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Calculations have been made on an ethyne model structure to investigate the influence of internal and 
external thermal motions of the molecules in a crystal on the time-averaged electron density distribution 
as obtained by X-ray diffraction. The density distributions in the chemical bonds have been studied from 
D(r) = Q(mol, r)-Q(at, r) difference maps, where o(at, r) is the density of the free-atom structure. Vibra- 
tions expected to occur at low temperatures reduce the difference densities at the centres of the C-C and 
C-H bonds by 12 and 23 % respectively. Reliable time-averaged difference density distributions can be 
calculated from the static distributions obtained by theory by use of the root-mean-square deviations 
(uZ) 1/2 of the atoms which can be determined by X-ray diffraction. Only negligibly small errors occur in 
the theoretical difference density maps if librations are accounted for by linear vibrations. In the experi- 
mental [Fo-Fc] difference densities errors due to treating librations as linear vibrations are largely, but 
not completely, compensated by shifts of the atoms. 

Introduction 

Electron density distributions as obtained by X-ray 
diffraction have been used by several authors to study 
changes in the charge distribution due to chemical 
bonding. In our laboratory this method is being ap- 
plied to investigate the density distributions in single, 
double and triple C-C bonds (Helmholdt, Ruysink, 
Reynaers and Kemper, 1972; Ruysink & Vos, 1974a). 
The observed densities are dynamic densities which 
means that they are time averages over the thermal 
motions of the atoms. On the other hand, densities 
calculated by quantum-theoretical methods are static 
densities as they are based on fixed configurations of 
the atomic nuclei. The observed densities can only be 
compared with theoretical results if in the latter the 
effect of thermal motion is taken into account. 

Usually bonding effects are studied from difference 
maps which are directly related to the changes in 
charge distribution due to chemical bonding. The for- 
mula for the theoretical dynamic difference density 
map reads 

D~(r) = Qd(mol, r) -- Qd(at, r) 

where Qa(mol, r) is the molecular dynamic density dis- 
tribution and Qa(at, r) the dynamic density distribu- 
tion of the corresponding free-atom structure. The cor- 
responding experimental quantity is the (Fo-Fc) 
X-ray diffraction difference map. In this map Fc is 
based on a model consisting of spherically symmetric 
atoms which should have the same parameters as the 
atoms in the molecule. Unfortunately this is not the 
case for the structure model obtained by normal X-ray 
diffraction refinement. In the atomic parameters sys- 
tematic errors occur, as during the refinement a model 
consisting of spherically symmetric atoms is considered. 

-~ .'Moreover librations are generally treated as linear 
vibrations. 

The first aim of the present paper is a study of the 
effects of thermal vibrations on the density distribu- 
tion. The study is done for a model structure consist- 
ing of ethyne, C2H2, molecules in which the inter- 
molecular distances are so large that the molecules do 
not influence each other (for a description of the struc- 
ture, see Ruysink & Vos, 1974b). Both internal and 
external vibrations of the molecules are considered in 
an investigation of how a reliable dynamic difference 
density distribution can be obtained from the static 
difference distribution calculated by quantum-mechan- 
ical methods. Secondly the errors caused by treating 
librations as linear vibrations will be discussed. 

The consequences of the use of spherically sym- 
metric atoms during the refinement are studied in the 
following paper (Ruysink & Vos, 1974b). 

The static density 

The wave function of the non-vibrating ethyne mol- 
ecule with C-C = 2.2752 and C-H = 1.9956 a.u. (Hand- 
book of Chemistry and Physics, 1960) has been ob- 
tained by the SCF-LCAO-MO method (Roothaan, 
1951). The 2N electrons of the molecule form a closed 
shell: N molecular orbitals are each occupied by two 
electrons. Each molecular orbital )f~ is a linear com- 
bination of a number of basis functions ~0,, 

z ,  = 2: ~ , c . , .  (1) 
i t  

c,~ is the/zth element of the ith SCF vector. As the 
molecular orbitals are orthonormal, the density distri- 
bution 0(r) in the molecule is given by 

o(r)=2 ~X~'(r)z,(r)=2 ~ ~ ~ c,,c,,(p~,(r)~0,(r). (2) 
i 1 i t  v 

A C 3 0 A  - 3 *  
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The calculations were done by Dr G. A. van der Velde 
with an extended basis set consisting of Hermite-Gaus- 
sian functions (Zivkovic & Maksic, 1968). A set (10,6, 
2/5, 2) consisting of ten s, six p and two d functions on 
carbon and of five s and two p functions on hydrogen 
was taken. For the calculation of the molecular or- 
bitals the basis set (10, 6,2/5,2) was contracted to 6,4, 
2/4, 2) by replacing a number of individual basis func- 
tions of the same type and centred on the same atom 
by the linear combination found for the free atoms. 
The calculations were repeated with a small basis set 
(6,3/3) during which no contraction was used. The co- 
efficients c,~ found for both cases are given by Ruysink 
(1973) and are available on request. 

In Table 1 some results of our calculations are com- 
pared with accurate values given by McLean & Yoshi- 
mine (1967). For the extended basis set the agreement 
is good, for the small set somewhat less so. Compari- 
son of the Q(mol, r ) -Q(at ,  r) maps calculated for the 
two sets shows that for the small basis set also a 
reasonable picture is obtained of the changes in the 
electron density distribution due to chemical bonding. 

Table 1. C 2 ~ ' I  2 - -  Theoretical data obtained f o r  the 
different basts sets 

The values listed for r(C-C) and r(C-H) were adopted during 
the calculation, D = Q(mol)-Q(at), r,(D)= half width of peak 

on the centre of C-C, perpendicular to C-C. 

McLean Present work 
(1967) Extended set Small set 

Orbital type S.T.F. G.T.F. 
Basis set used 5,4,1,1/2,1,1 10,6,2/5,2 
r(C-C) in a.u. 2.281 2.2752 
r(C-H) in a.u. 2.002 1.9956 
E(a.u.) - 76.8540 - 76.8476 
0(tool) at C 

in e a.u. -3 126.2 121.7 
D(C nucleus) - 1.413 - 1.440 
D(H nucleus) 0-109 0-099 
D(centre C-C) 0.124 0.125 
D(max on C-H)* 0-121 0.110 
r~(D) 0"83 0"80 

G.T.F. 
6, 3/3 
2.2752 
1.9956 

-76.6737 

106.9 
- 1.214 

0.078 
0.110 
0.096 
0.75 

* Lies close to H (see Fig. 1.) 

T h e  d y n a m i c  dens i ty  

Introduction 

The geometry of the molecule changes with time 
owing to the internal vibrational modes, whereas its 
position and orientation in the crystal change as a result 
of external translations and librations. The dynamic 
density is the time-averaged density for all molecular 
geometries, positions and orientations. In this section 
we shall consider the changes in the density distribu- 
tion due to external and internal vibrations. 

M e t h o d  o f  calculation 

To obtain a feasible calculation of the dynamic den- 
sity distributions the following assumptions have been 
made. 

(a) The SCF vectors found for the static molecule 
are used for all molecular geometries (apart from the 
normalization factors C, discussed below). This is an 
extension of the convolution approximation introduced 
by Coulson & Thomas (1971) and Thomas (1972) for 
diatomic molecules. The figures in their papers show 
that at short distances from the nuclei, where the den- 
sity changes due to internal vibrations are appreciable, 
the convolution approximation gives reliable dynamic 
difference density distributions. No figures are given 
for the centres of the bonds. On the basis of recent 
accurate calculations on H~- by Thomas (1973) it is 
expected that in the case of internal vibrations the 
static and dynamic densities in the centres of the bonds 
will be hardly different. 

Since the overlap of basis functions depends on the 
molecular geometry, the normalization factors of the 
molecular orbitals Z1 are functions of the molecular 
geometry. We have approximated these normaliza- 
tion factors, which should be calculated for each ge- 
ometry G, by averaged normalization factors C~ de- 
fined by 

c~' I (z~'(r, G)z,(r, G))~dr = 1 (3) I 

(b) The vibrations are harmonic and independent of 
each other. For the ith linear vibration the distribu- 
tion function P(u~) for an atom, taken as a standard 
atom, is given by 

P(ui)dut to o , ' ,  31/2~--3/2 exp [-gx~u2~ 

2 g~u~ddu~ (4) - grout1 - 

gxt = (2u~1)- ' ,  ut is the deviation from the equilibrium 
position, dui = dux~duy~duzi. In case the deviation of an 
atom a: is coupled with that of the standard atom with 
a coupling constant k~, its deviation is given by 

u~=k~iu~ (5) 

and the distribution function obeys the relation 

P (k~,u~)d(k~,ui)dul = P (ui)du~. (6) 

The total displacement of an atom x undergoing m 
independent vibrations is given by 

u , =  u,l = ~ kKiui. (7) 
i = 1  i = 1  

From (6) and the fact that the vibrations are indepen- 
dent, it follows that the distribution function of atom 
~- obeys the formula 

P(u~I  . . .  u ~ . , ) d u ~ l  . . .  du~, , ,=  I~ P(u i )du~  . (8) 
i = l  

With the assumptions discussed above the dynamic 
density Qn(r), found by averaging over all molecular 
geometries and positions G, is given by 

Qe(r) 2 ~ ~  z = C tc, tc,,iOe, ,v(r) (9) 
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with 

~oa, . j r ) -  Qou(r, G)e,(r, O)>o 

=f "'" I HP(ui)~pu(r-uK)¢~(r-ua)dua...du~, 
I l l  lgra i 

(10) 

where x or 2 indicates the atomic nucleus on which 
the basis function Cu or tp~ is centred. 

Owing to the favourable properties of the Hermite-  
Gaussian (HG) functions used for the basis functions 
~0, and tp~, (10) can be worked out in analytical form. 
A HG function of s type is defined by 

f(s type) = exp - c~((r- A) 2 (11) 

where ~ is the orbital exponent, r=pos i t i on  vector in 
space and A =posi t ion vector of nucleus on which the 
basis function is centred. Functions of p type are ob- 
tained from (1 I) by differentiation with respect to the 
relevant component of A, for instance 

c3 [exp _ ~ ( r _ A ) 2  ] f(Px type)= - ~  

= 2~(rx-  Ax) exp - ~(r - A) 2. (12) 

Functions of d type are derived in an analogous way 
by taking second derivatives. 

If both ¢,  and cp~ in (10) are s-type functions, it can 

1 
0[ ~ Z 0'5 

l 

I 
(a.u.) 

-005 

-0 10] ,L /  

Fig. 1. C2H2. Difference densities D(r)=o(mol)-o(at) along 
z in e a.u. -3. The inversion centre of the molecule is taken 
as origin, • = C and × = H. a = static difference density; b and 
c are dynamic difference densities; details are given in the 
text. 

be seen from (11), (4) and (8) that Qa,,v(r) can be fac- 
torized according to 

Oa. ,v(r) = Oa(x)oa(Y)Qa(z) (13) 
with 

Oa(x)=7 [~]1/2Iu . . .  fu, eXp[ -a (x -A-~k ,u , )2  

- b(x- B -  ~ l,u~) 2- ~ gtu~]dul . . .  du,,. (14) 
i i 

In the latter relation the indices #, v and x have been 
omitted for clarity, a(b) stands for the orbital ex- 
ponent of atom K(2), A(B) for its nuclear equilibrium 
position and k(l) for the coupling constant of (5). 
From the definition of the HG functions and the fact 
that A and B are constants for the integration of (10), 
it follows that Ca(x) values for p or d-type functions 
can easily be obtained from (14) by differentiating the 
integrated expression with respect to the relevant com- 
ponents of A or B. 

Results 
With the formulae listed above dynamic difference 

density maps 

D J r )  = Qn(mol, r) - QJat, r) 

have been calculated for ethyne. These maps have 
cylindrical symmetry around z (lying along C-C). In 
Fig. 1 the following D(r) values along z are shown. 

(a) The static density (for comparison purposes). 
(b) The dynamic density based on the internal vibra- 

tions found by spectroscopic work (Meisingseth & 
Cyvin, 1961; Cyvin & Meisingseth, 1961) plus rigid- 
body translations along x, y and z. These translations 
are taken such that the total thermal motion of the 
carbon atoms corresponds to an isotropic temperature 
factor B =  87"~2<U2> = 1"07 A 2. A thermal motion of ap- 
proximately this magnitude is expected for organic 
compounds at low temperatures (Cruickshank, 1956c). 
<u 2> values and coupling constants k of the vibrations 
used in the calculation of Qa(mol, r) are given in Table 2. 
It should be noted that Qa(at, r), which is composed of 
free atoms, is not influenced by the coupling assumed 
for the vibration, as the density distributions of the 
free atoms are independent of each other. 

(c) The dynamic density corresponding to the 
(u2(total)> values of (b) for each of the atoms and each 
direction, but interpreted as rigid-body translations 

Table 2. Vibrational amplitudes (a.u.) and coupling constants k for the ethyne molecule H(1)-C(1)-C(2)-H(2) 

Rigid-body translations are given by T,. 

Vibration Direction (u2(C)) 1/2 k(C1) k(C2) k(H1) k(H2) 
Xg z 0"034 1 - 1 - 2"904 2"904 
X, z 0-014 1 1 - 6 - 6 
rc a x(y) 0"057 1 - 1 - 2" 179 2" 179 
re. x(y) 0"030 1 1 - 6 - 6 
Taa z 0"217 1 1 1 1 
T~t = I"22 x(y) 0"210 1 1 1 1 
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as far as possible. Residual (u2) values for the hydro- 
gen atoms are assumed to be due to vibrations which 
are independent of each other and of the rigid-body 
translations. 

In calculation (c) the in-phase coupling of the atoms 
for the external vibrations is taken into account. For 
the internal vibrations the coupling of the atoms is 
neglected. The resulting errors in the dynamic density 
are expected to be small, as, owing to the small inter- 
nal vibrational amplitudes of the carbon atoms, the 
lengths assumed by C-C and C-H during the vibra- 
tions are only slightly affected by the coupling con- 
stants of the internal motions. We see that the curve 
(c) obtained shows good agreement with curve (b). 
This result is encouraging as it shows that for the 
present example theoretical dynamic difference den- 
sities can be calculated reliably from static densities 
by making use of the (u2(total)) values, which can be 
obtained from X-ray diffraction. It therefore seems 
probable that spectroscopic data are not required for 
this type of work. 

To check whether it is possible to neglect the cou- 
pling between the atoms for the external vibrations as 
well as for the internal vibrations, a calculation has 
been carried out with the assumption that the 
(u2(total) values of the atoms can be ascribed to in- 
dependent vibrations. At some places the deviations 
from curve (b) are of the order of 0-01 e a .u . -3=  
0.07 e /~-3  and thus considerably larger than observed 
for curve (c). These deviations are approximately equal 
to the standard deviations of present accurate low- 
temperature X-ray diffraction studies (cyanuric acid, 
a = 0 . 0 6  e tk-3; Verschoor & Keulen, 1971) and larger 
than the standard deviations expected for future very 
accurate work. To obtain theoretical dynamic density 
distributions for which the errors are small in com- 
parison with the experimental errors, it is thus neces- 
sary to account for the coupling between the atoms 
for the external vibrations. 

Fig. 1 shows that detailed features present in the 
static density disappear owing to the thermal vibra- 
tions. Especially in the region around the carbon 
nucleus the change is large, the cusp of - 1.44 e a.u.-3 
disappearing to a large extent. For both cases (b) and 
(c) the difference density on the centre of the C-C bond 
is reduced by 12 % and that on the centre of the C-H  
bond by 23 %. The remaining density is 0.108 e a.u. -3 
and 0.083 e a.u. -3 respectively. 

Errors caused by treating librations as linear vibrations 
Introduction 

In X-ray diffraction studies thermal librations are 
usually treated as linear vibrations. It may be ques- 
tioned, however, whether (Fo-Fc) maps obtained in 
this way show reliable values for the bonding maxima 
in the centres of the bonds. For a diatomic molecule, 
for instance, we expect the maxima to be too high as 
the F~ values are deduced from a model in whic, h the 

electrons follow the thermal motion of the nuclei, 
whereas actually the electrons in the centre of the bond 
do not move if only librational motions are considered. 
To study the errors due to treating librations as vibra- 
tions we have calculated the difference map 

Da(at) = Qa(at, l ib ra t ion) -  Qa(at, vibration) 

for the free-atom structure corresponding to the ethyne 
molecule. 

Finally we have investigated the effect of describing 
librations by linear vibrations on theoretical dynamic 
difference density maps. 

Method of calculation 
We assume that the molecule librates around its iner- 

tial axes (for ethyne around x and y perpendicular to 
the C-C bond of the molecule). Fig. 2 shows the situa- 
tion for libration around x. The dynamic density in a 
point P is calculated as the time average of the den- 
sities of the static molecule seen by P when librating 
around O. The librations are assumed to be harmonic 

I L ~  I*Zl  
0 

P(Y.Z) 

z 

Fig. 2. Libration around x. 

0 ~ ,~ / "  '. I\ / 4,, 
.t-7~,,~ o.~ ~ b' "~ . i f  2.0 

- 0 5 ~  

-1.0 

Fig. 3. Difference density Da(at) = Qa(at, libration)- 0n(at, 
vibration) along z, in e a.u.-3; .=C(libration), (~2)1/2= 
(f12)t/2=4°. (a) z(C, vibration)=z(C, libration). A)(b). z(C, 
vibration)=z(C, libration)-0.0055 a.u. (=0.0029 For 
z > 2 a.u. the differences are small and are not shown in th~ 
Figure, 
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and independent of the linear vibrations. The proba- 
bility P(e)de for a deviation between e and e + de from 
the equilibrium position is given by 

P(o~)doc=g~/Zrc -1/2 exp (-g~(z 2) (15) 

with g, = (2a2) - 1. Analogous functions can be derived 
for libration around y and z. 

From Fig. 2 it can be deduced that for rotations of 
a, fl and 7 around x, y and z respectively, the displace- 
ment vector v for P is given by 

v = L .  r ,  (16) 

where r gives the position of P, and L obeys the relation 

cos f l+cos 7 - 2  sin 7 - s i n  fl 
L =  - sin 7 cos a + cos 7 -  2 sin a 1. 

sin fl - sin a cos a + cos f l -  2] 
(17) 

Comparison of (16) with (7) and consideration of (14) 
shows that the formula for the dynamic density 0n(r) 
reads 

0k(r) = IIIP(a)P(fl)P(7)exp [ - a ( r - A - L .  r) 2 

- b ( r - B - L .  r)2]dedfld~,. (18) 

In this ease the integral cannot be factorized to a 
product of one-dimensional terms. The formula can 
be worked out, however, by assuming that (a2)1/2, 
(fl2)1/2 and (y2)m are small. This assumption is valid 
for structures determined at low temperatures, where 
root-mean-square values of approximately 4 ° have been 
observed (Keulen, 1969, p. 66). 

Results 
To study Da(at)= 0n(at, libration)-0n(at, vibration) 

we have ealcuIated the dynamic density 0n(at, libration) 
for the free-atom ethyne structure with (~ , )m = (fl2)v, 
= 4 ° corresponding to (u2(C, x)) = (u2(C,y)) = 0.0063 
a.u. 2 and (u~(H,x))=(u2(H,y))=O.0478 a.u? or 
B(C)=0.14  and B ( H ) - I . 0 6  A 2. In 0a(at, vibration) 
the (u ' )  values of the atoms have been ascribed to 
linear vibrations. Fig. 3 (curve a) shows that the dif- 
ference in the centre of the C-C bond is positive, as 
expected, but small. The numerical data show that it 

3 amounts to 0.003 e a.u.-  =0.02 e A -3, which is ap- 
proximately 2.5 % of the bonding maximum on C-C. 
The difference is considerably smaller, however, than 
the standard deviations obtained for accurate low- 
temperature X-ray diffraction studies (cyanuric acid, 
~=0.06 e A-3;  Verschoor & Keulen, 1971). On the 
centre of C-H  the difference is even smaller. 

As is seen in Fig. 3 (curve a) a much larger effect 
is observed at the carbon atom where the difference 
density shows a considerable slope. It is well known 
that such a slope when occurring in a difference syn- 
thesis during a structure refinement causes the carbon 
atom to shift towards the centre of C-C, thus result- 
ing in a shortening of C-C. Cruickshank (1956b) has 
pointed out that bond shortening occurs for X-ray 

refinements, where librations are treated as linear vibra- 
tions. According to his formula the shift of C towards 
the centre of C-C is 0.0029 A for the librations con- 
sidered in the present case. We have attempted to 
eliminate the slope at C in our difference map by ap- 
plying this shift of 0.0029 • to C in Qa(at, vibration). 
The difference map obtained in this way is given by 
curve b in Fig. 3. The difference at the centre of the 
C-C bond is reduced to 0.001 e a.u. -3=  0.01 e A -3. 
Around the carbon atom there are ripples which may 
be expected to be smeared out to a large extent by the 
translational motions. It seems reasonable to assume 
that positive and negative regions close to the atomic 
nucleus will compensate each other, but at somewhat 
larger distances De(at) wiU remain positive for z < z(C) 
and negative for z > z(C). Owing to translational mo- 
tions corresponding to B =  1.07 ./t 2, the height of the 
carbon atom in ethyne reduces to 5.4 % of its static 
value. If for Da(at) the same reduction is assumed to 
occur for the maximum of 0.24 e a.u. -a at z~0.97 a.u. 
and for the minimum of -0 .24  e a.u. -3 at z ~  1.33 a.u., 
the remaining values are (plus or minus) 0.09 e A -3. 
The errors due to treating librations as linear vibra- 
tions are thus largely, but not completely, compensated 
by shifts of the atoms as occurring in normal structure 
refinements. It is therefore advisable to account for 
librations in the correct way in accurate studies of 
bonding effects. Methods have been proposed by John- 
son (1969) and Maslen (1969). 

The errors in the theoretical dynamic density distri- 
bution due to describing librations as linear vibrations 
are obtained from the map 

Dn(libration) - Da(vibration) 
= [0a(mol, libration) - 0a(at, libration)] 
- [0n(mol, vibration) - Qa(at, vibration)] 
= Da(mol) - Da(at) 

with 

Da(mol)=oa(mol, libration)-Qa(mol, vibration) 

and 

Da(at) = qa(at, libration) - Qa(at, vibration). 

Da(at) has been discussed above. For the calcula- 
tion of Dn(mol) along z of the ethyne molecule it was 
assumed that the vibrational motions of neighbouring 
C and H atoms in the molecule are in phase, whereas 
those of the centrosymmetrically related C - H  parts are 
in antiphase. It appears that Dn(mol)-Da(at) is 0"0035 

3 e a.u.-a=0"023 e ~ -  on the centre of C-C. At C-H 
and close to the hydrogen atom the differences are 
smaller. At the position of the carbon atom Da(mol)-  
Da(at) shows a slope of 0.3 e a.u. -4 with maximum and 
minimum values of approximately 0.018 and - 0.018 
e a.u.-a respectively. The sign of the slope is opposite 
to that in Fig. 3 because the difference density Da(r) 
is negative rather than positive at the carbon atom. To 
a rough approximation the maximum and minimum 
values may be assumed to be reduced by the same 
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percentage amount as the carbon atom in ethyne be- 
cause of the presence of translational motions. With 
this assumption the reduced values are estimated at 
0-0009 e a.u.-3=0.006 e A -3  and -0 .006 e A -a for 
B-- 1.07 A 2, which shows that they are negligibly small. 
From the results obtained it can be concluded that the 
errors in theoretical dynamic difference densities due 
to using vibrations instead of librations are small in 
comparison with the standard deviations of present ex- 
perimental X-ray studies. 

Conclusion 

The results of the previous sections show that theoret- 
ical dynamic difference densities can be obtained from 
the static densities by making use of the (u 2) values 
of the atoms determined by X-ray diffraction. To get 
the coupling of the atoms right for the predominant 
part of the thermal motions the (u 2) values should be 
interpreted in terms of rigid-body motions as far as 
possible. For rigid molecules a thermal motion anal- 
ysis should therefore be carried out for the molecule 
as a whole, whereas in molecules consisting of rigid 
fragments the rigid-body motions of these fragments 
will need to be considered in addition to those of the 
complete molecule. For the translational motions all 
atoms have the same amplitude and vibrate in phase. 
For the librational motions, which can be treated as 
linear vibrations, the amplitudes of the atoms depend 
on their distances from the libration axes and parts 
of the rigid fragment will vibrate in anti-phase. Residual 
(u 2) values are ascribed to independent linear vibra- 
tions. Errors may occur in the theoretical dynamic 
difference density owing to uncertainties in the coupling 
constants, if it appears to be impossible to obtain 
separate values for the librational and translational 
parts of the thermal motion. Cruickshank (1956a) has 
pointed out for which types of molecules this difficulty 
may arise. 

For the experimental [Fo-Fc] maps, which have to 
be compared with the theoretical maps, systematic er- 
rors due to using vibrations instead of librations are 
expected to exceed the standard deviations of accurate 
X-ray diffraction studies. Moreover it should be noticed 
that with the present precision of the X-ray work 

changes as large as 10 to 20 % of the bonding maxima 
cannot be detected with certainty. It is therefore neces- 
sary to improve the experimental accuracy. In such ac- 
curate X-ray diffraction studies librational motions 
must be accounted for in the correct way during the 
structure refinement. 
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